Tissue Engineering of the Intervertebral Disc’s Annulus Fibrosus: A Scaffold-Based Review Study
Tissue Engineering and Regenerative Medicine, ISSN: 2212-5469, Vol: 14, Issue: 2, Page: 81-91
2017
- 22Citations
- 46Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations22
- Citation Indexes22
- 22
- CrossRef9
- Captures46
- Readers46
- 46
Review Description
Tissue engineering as a high technology solution for treating disc’s problem has been the focus of some researches recently; however, the upcoming successful results in this area depends on understanding the complexities of biology and engineering interface. Whereas the major responsibility of the nucleus pulposus is to provide a sustainable hydrated environment within the disc, the function of the annulus fibrosus (AF) is more mechanical, facilitating joint mobility and preventing radial bulging by confining of the central part, which makes the AF reconstruction important. Although the body of knowledge regarding the AF tissue engineering has grown rapidly, the opportunities to improve current understanding of how artificial scaffolds are able to mimic the AF concentric structure—including inter-lamellar matrix and cross-bridges—addressed unresolved research questions. The aim of this literature review was to collect and discuss, from the international scientific literature, information about tissue engineering of the AF based on scaffold fabrication and material properties, useful for developing new strategies in disc tissue engineering. The key parameter of this research was understanding if role of cross-bridges and inter-lamellar matrix has been considered on tissue engineering of the AF.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85017146006&origin=inward; http://dx.doi.org/10.1007/s13770-017-0024-7; http://www.ncbi.nlm.nih.gov/pubmed/30603465; http://link.springer.com/10.1007/s13770-017-0024-7; https://dx.doi.org/10.1007/s13770-017-0024-7; https://link.springer.com/article/10.1007/s13770-017-0024-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know