A New Approach to Evaluate Pressure of Solids at High Compression
National Academy Science Letters, ISSN: 2250-1754, Vol: 47, Issue: 6, Page: 713-718
2024
- 3Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The new isothermal equation of state (NEOS) for solids is derived through the theory of lattice potential, utilizing the concept of volume dependence of the short-range force constant. To obtain this equation of state, we employed the concept of the third-order approximation of the lattice potential. For critical analysis, we compared the results of isothermal equations of state (EOSs), such as Vinet EOS, Murnaghan EOS, Holzapfel EOS, Born-Mie EOS, Birch–Murnaghan EOS, and NEOS. The newly derived equation of state (NEOS) has been utilized to analyze the compression behavior of molybdenum (Mo), Potassium (K), and Xenon (Xe). It was found that NEOS is in good agreement with experimental data for given solids Mo, K, and Xe up to high compression, while Vinet EOS, Murnaghan EOS, Born-Mie EOS, Holzapfel EOS, and Birch–Murnaghan EOS are less sensitive in calculating pressure at high compression in most cases. Thus, NEOS remains consistent and in good agreement with experimental results for all the samples of solids taken, even up to high compression.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know