Suppression of external noise in on-chip photon-pair sources
Journal of the Korean Physical Society, ISSN: 1976-8524, Vol: 85, Issue: 6, Page: 476-481
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Quantum photonic integrated circuits are ideal for photon-based complex quantum information systems due to their size, stability, and scalability. Photon-pair sources integrated into these circuits help reduce connection losses. These pairs are generated by pumping strong light through optical fibers into the chip, which can introduce unwanted noise photons, lowering the performance of quantum sources. Here, we studied photon pairs generated solely from on-chip sources to improve quantum photonic applications. External filtering often fails due to environmental influences, leading us to propose on-chip filters before and after photon-pair generation to mitigate external noise. We fabricated silicon waveguides with and without on-chip asymmetric Mach–Zehnder interferometer filters and analyzed photon pair properties through experiments. The results showed that on-chip filters effectively eliminate external noise, tripling the coincidence-to-accidental coincidence ratio. This suggests that on-chip filtering holds significant promise for enhancing quantum photonic applications like quantum communications and computations.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know