Single proton tight coupling in the bacterial flagellar motor
Journal of the Korean Physical Society, ISSN: 1976-8524, Vol: 85, Issue: 8, Page: 691-697
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The bacterial flagellar motor is the largest and most complex biological rotary machine that exerts a torque of up to about 1000 pN to propel the swimming of flagellated bacteria. It is embedded in the cell membrane and consists of a 40 nm rotor and about 11 stators. Each stator unit, a torque generating protein complex, is driven by the proton motive force, a proton electrochemical gradient across the inner membrane. However, despite much progress, we lack sufficient evidence of how the ion flow is coupled to motor rotation. Here, we measured the motor speed as a function of the number of stators and found that the number of stators is linearly proportional to the motor speed. Our measurement shows that each stator passes about 24 ions per revolution, indicating that each proton flow can generate torque to drive the motor rotation about 14 degrees which is consistent with 26-fold periodic due to 26 FliG subunits. This result shows that the fixed number of ions yields a constant motor rotation independent of the number of stators and motor speed, indicating proton tight coupling between torque generation and proton flux.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know