An Algorithm to Identify Generic Drugs in the FDA Adverse Event Reporting System
Drug Safety, ISSN: 1179-1942, Vol: 40, Issue: 9, Page: 799-808
2017
- 10Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- CrossRef10
- Captures17
- Readers17
- 17
Article Description
Introduction: Although generic drugs constitute approximately 88% of drugs prescribed in the US, there are no reliable methods to identify generic drugs in the US FDA Adverse Event Reporting System (FAERS). Objective: The aim of this study was to develop an algorithm for identifying generic drugs in the FAERS. Data Source: We used 1237 adverse event reports for tamsulosin, levothyroxine, and amphetamine/dextroamphetamine from the publicly available FAERS from 2011–2013, and 277 source case narratives obtained from the FDA. Methods: Two reviewers independently and in duplicate used a three-item algorithm including the following criteria: manufacturer name, New Drug Application (NDA) number/abbreviated NDA (ANDA), and specific use of the term ‘generic’ or ‘brand’ to classify the focal drug of each case report as definitely generic (two of three criteria), probably generic (one of three criteria), brand, and cannot be assessed. Inter-rater reliability was estimated using kappa coefficients, and internal consistency was estimated using Cronbach’s alpha. We compared the classification of the drugs as generic versus non-generic in publicly available FAERS compared with the original case reports (reference). Results: The focal drug was classified as generic (definite or probable) in 15.8% (39/234), 9% (67/742), and 16.7% (42/261) of tamsulosin, levothyroxine and amphetamine/dextroamphetamine cases, respectively (overall kappa 0.89, 95% confidence interval 0.85–0.93), while 37% of reports could not be classified due to incomplete information. Among the drugs classified as generics using the publicly available FAERS, we categorized 95.3% as generic drugs using the original case reports. Among those drugs that did not meet the algorithm-based definition of generic in the publicly available data, 20.9% were reclassified as generics using the original case reports. Conclusions: The algorithm demonstrated high inter-rater reliability with moderate internal consistency for identifying generic drugs in the FAERS, in our sample. Future efforts should focus on improving the reliability and validity of identifying generics through improving the completeness of reporting in the FAERS.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85020265268&origin=inward; http://dx.doi.org/10.1007/s40264-017-0550-1; http://www.ncbi.nlm.nih.gov/pubmed/28593504; http://link.springer.com/10.1007/s40264-017-0550-1; https://dx.doi.org/10.1007/s40264-017-0550-1; https://link.springer.com/article/10.1007/s40264-017-0550-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know