Design, fabrication, and evaluation of functionally graded triply periodic minimal surface structures fabricated by 3D printing
Journal of the Brazilian Society of Mechanical Sciences and Engineering, ISSN: 1806-3691, Vol: 45, Issue: 1
2023
- 14Citations
- 32Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Cellular structures are a favorite selection for the design of lightweight components and energy absorption applications due to several advantages such as their customizable stiffness and strength. In this investigation, functionally graded (FG) triply periodic minimal surfaces, Schoen-IWP (SIWP), and Schwarz primitive (SPrim) cellular structures were fabricated by masked stereolithography (MSLA) technique using ABS-like gray resin. The sample morphology, deformation behavior, mechanical characteristics, and energy absorption of graded and uniform structures were studied using experimental compression tests. The FG sample structures exhibited layer-by-layer collapse delaying shear failure. On the other hand, uniform samples showed complete diagonal shear failure. The total energy absorption to the densification point was 0.52 MJ/m and 0.58 MJ/m for graded and uniform SIWP, respectively. Additionally, the absorbed energy of the graded SPrim structure was 0.59 MJ/m while the uniform one absorbed 0.27 MJ/m. The investigations showed that the graded SPrim absorbed more energy with high densification strain during the compression test.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know