Modeling nonlinear fractional-order subdiffusive dynamics in nuclear reactor with artificial neural networks
International Journal of Dynamics and Control, ISSN: 2195-2698, Vol: 11, Issue: 4, Page: 1995-2020
2023
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
This paper presents the development and analysis of artificial neural network (ANN) models for the nonlinear fractional-order (FO) point reactor kinetics model, FO Nordheim–Fuchs model, inverse FO point reactor kinetics model and FO constant delayed neutron production rate approximation model. These models represent the dynamics of a nuclear reactor with neutron transport modeled as subdiffusion. These FO models are nonlinear in nature, are comprised of a system of coupled fractional differential equations and integral equations, and are considered to be difficult for solving both analytically and numerically. The ANN models were developed using the data generated from these models. The work involves the iterative process of ANN learning with different combinations of layers and neurons. It is shown through extensive simulation studies that the developed ANN models faithfully capture the transient and steady-state dynamics of these FO models, thereby providing a satisfactory representation for the nonlinear subdiffusive process of neutron transport in a nuclear reactor.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85144696059&origin=inward; http://dx.doi.org/10.1007/s40435-022-01100-6; http://www.ncbi.nlm.nih.gov/pubmed/36590649; https://link.springer.com/10.1007/s40435-022-01100-6; https://dx.doi.org/10.1007/s40435-022-01100-6; https://link.springer.com/article/10.1007/s40435-022-01100-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know