Decoding plant defense: accelerating insect pest resistance with omics and high-throughput phenotyping
Plant Physiology Reports, ISSN: 2662-2548, Vol: 29, Issue: 4, Page: 793-807
2024
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures10
- Readers10
- 10
Review Description
Genotype screening techniques in crop protection are being revolutionized by integrating multi-omics into high-throughput phenotyping (HTP). This comprehensively explains the biochemical and molecular resistance mechanisms underlying plant–insect interactions. Metabolomics offers insights into the metabolic changes and pathways activated in plants in response to insect damage, while proteomics reveals the dynamic protein expressions and modifications involved in plant defense. Quantitative measurements of unstructured/image-based and semi-structured data require sophisticated storage, processing, and advanced analysis methods. Machine learning (ML) and artificial intelligence (AI) are crucial in this integrated approach, enabling the automated, accurate, and efficient analysis of large datasets. Robust ML models can predict plant resistance levels by analyzing metabolic and proteomic profiles, while deep learning techniques can identify patterns and correlations within complex datasets. Innovations in ML models are needed to account for multiple stress factors simultaneously, reflecting real-field conditions more accurately. Utilizing advanced imaging platforms, sensor technologies, and AI-driven data analysis promises significant advancements in understanding and enhancing plant resistance to insect pests, ultimately contributing to sustainable agriculture and food security. This review provides the significance of interdisciplinary approaches in discovering specific biomarkers and pathways relevant to plant resistance against insect pests.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know