Influence of Laser Energy Density and Sliding Velocity on Wear Behavior of Laser Powder Bed Fusion Processed Maraging Steel 300 Alloy
Lasers in Manufacturing and Materials Processing, ISSN: 2196-7237, Vol: 11, Issue: 3, Page: 582-609
2024
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In the present study, maraging steel of grade 300 samples was additively manufactured with Laser Powder Bed Fusion (LPBF) technique at various laser energy density parameters. The maximum microhardness and relative density occur at 92.1 J/mm laser energy density which indicates a highly dense structure. The microstructural analysis from SEM images indicates that as the laser energy density rises the short and fine columnar microstructure changes to coarse and narrow columnar structure. The wear rate of the additively manufactured maraging steel decreases as the laser energy density rises from 61.41 to 92.1 J/mm and a further rise in laser energy density increases the wear rate. The wear rate rises with a rise in sliding velocity between 1.5 and 3.5 m/s. The coefficient of friction (COF) decreases as the laser energy density rises from 61.41 to 92.1 J/mm and a further rise in laser energy density raises the coefficient of friction. The COF rises with a rise in sliding velocity range between 1.5 and 3.5 m/s.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know