When remediating one artifact results in another: control, confounders, and correction
History and Philosophy of the Life Sciences, ISSN: 1742-6316, Vol: 46, Issue: 1, Page: 5
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Scientists aim to remediate artifacts in their experimental datasets. However, the remediation of one artifact can result in another. Why might this happen, and what does this consequence tell us about how we should account for artifacts and their control? In this paper, I explore a case in functional neuroimaging where remediation appears to have caused this problem. I argue that remediation amounts to a change to an experimental arrangement. These changes need not be surgical, and the arrangement need not satisfy the criterion of causal modularity. Thus, remediation can affect more than just the factor responsible for the artifact. However, if researchers can determine the consequences of their remediation, they can make adjustments that control for the present artifact as well as for previously controlled ones. Current philosophical accounts of artifacts and the factors responsible for them cannot adequately address this issue, as they do not account for what is needed for artifact remediation (and specifically correction). I support my argument by paralleling it with ongoing concerns regarding the transparency of complex computational systems, as near future remediation across the experimental life sciences will likely make greater use of AI tools to correct for artifacts.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85182256234&origin=inward; http://dx.doi.org/10.1007/s40656-023-00606-2; http://www.ncbi.nlm.nih.gov/pubmed/38206408; https://link.springer.com/10.1007/s40656-023-00606-2; https://dx.doi.org/10.1007/s40656-023-00606-2; https://link.springer.com/article/10.1007/s40656-023-00606-2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know