Cost-Effective and Environmentally Friendly Mass Manufacturing of Optical Metasurfaces Towards Practical Applications and Commercialization
International Journal of Precision Engineering and Manufacturing - Green Technology, ISSN: 2198-0810, Vol: 11, Issue: 2, Page: 685-706
2024
- 22Citations
- 19Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Optical metasurfaces consisting of two-dimensional nanostructures have rapidly developed over the past two decades thanks to their potential for use as optical components, such as metalenses or metaholograms, with ultra-compact form factors. Despite these rapid developments, major challenges for the commercialization of metasurfaces still remain: namely their mass production and use in real-life devices. A lot of effort has been made to overcome the limitations of electron beam lithography which is commonly used to fabricate metasurfaces. However, a breakthrough in mass production is still required to bring the cost of metasurfaces down into the price range of conventional optics. This review covers deep-ultraviolet lithography, nanoimprint lithography, and self-assembly-based fabrication processes that have the potential for the mass production of both cost-effective and environmentally friendly metasurfaces. We then discuss metalenses and future displays/sensors that are expected to take advantage of these mass-produced metasurfaces. The potential applications of mass-produced optical metasurfaces will open a new realm for their practical applications and commercialization.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know