Evolutionary generative design of supercritical airfoils: an automated approach driven by small data
Complex and Intelligent Systems, ISSN: 2198-6053, Vol: 10, Issue: 1, Page: 1167-1183
2024
- 14Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Supercritical airfoils are critical components in the design of commercial wide-body aircraft wings due to their ability to enhance aerodynamic performance in transonic flow regimes. However, traditional design methods for supercritical airfoils can be time-consuming and require significant manual effort, not to mention the high cost associated with computational fluid dynamics analysis. To address these challenges, this paper introduces a highly automated approach for supercritical airfoil design, called Evolutionary Generative Design (EvoGD). The EvoGD approach is based on the framework of Evolutionary Computation and employs a series of sophisticated data-driven generative models incorporated with physical information to iteratively refine initial airfoil shapes, resulting in improved aerodynamic performances and reduced constraint violations. Moreover, to speed up the evaluation of the generated airfoils, a series of accurate and efficient data-driven predictors are utilized. The efficacy of the EvoGD approach was demonstrated through experiments on a dataset of 501 supercritical airfoils, including one baseline design and 500 randomly perturbed airfoils. On average, the generated airfoils showed improved performance in terms of buffet lift coefficient, cruise lift-to-drag ratio, and thickness by 5%, 4%, and 1%, respectively. The best generated airfoil outperformed the baseline design in terms of critical buffet lift coefficient and cruise lift-to-drag ratio by 7.1% and 6.4%, respectively. The entire design process was completed in less than an hour on a personal computer, highlighting the high efficiency and scalability of the EvoGD approach.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know