A novel iteration scheme with conjugate gradient for faster pruning on transformer models
Complex and Intelligent Systems, ISSN: 2198-6053, Vol: 10, Issue: 6, Page: 7863-7875
2024
- 84Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures84
- Readers84
- 84
Article Description
Pre-trained models based on the Transformer architecture have significantly advanced research within the domain of Natural Language Processing (NLP) due to their superior performance and extensive applicability across multiple technological sectors. Despite these advantages, there is a significant challenge in optimizing these models for more efficient deployment. To be concrete, the existing post-training pruning frameworks of transformer models suffer from inefficiencies in the crucial stage of pruning accuracy recovery, which impacts the overall pruning efficiency. To address this issue, this paper introduces a novel and efficient iteration scheme with conjugate gradient in the pruning recovery stage. By constructing a series of conjugate iterative directions, this approach ensures each optimization step is orthogonal to the previous ones, which effectively reduces redundant explorations of the search space. Consequently, each iteration progresses effectively towards the global optimum, thereby significantly enhancing search efficiency. The conjugate gradient-based faster-pruner reduces the time expenditure of the pruning process while maintaining accuracy, demonstrating a high degree of solution stability and exceptional model acceleration effects. In pruning experiments conducted on the BERT and DistilBERT models, the faster-pruner exhibited outstanding performance on the GLUE benchmark dataset, achieving a reduction of up to 36.27% in pruning time and a speed increase of up to 1.45× on an RTX 3090 GPU.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know