TARGCN: temporal attention recurrent graph convolutional neural network for traffic prediction
Complex and Intelligent Systems, ISSN: 2198-6053, Vol: 10, Issue: 6, Page: 8179-8196
2024
- 1Citations
- 11Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Traffic prediction is crucial to the intelligent transportation system. However, accurate traffic prediction still faces challenges. It is difficult to extract dynamic spatial–temporal correlations of traffic flow and capture the specific traffic pattern for each sub-region. In this paper, a temporal attention recurrent graph convolutional neural network (TARGCN) is proposed to address these issues. The proposed TARGCN model fuses a node-embedded graph convolutional (Emb-GCN) layer, a gated recurrent unit (GRU) layer, and a temporal attention (TA) layer into a framework to exploit both dynamic spatial correlations between traffic nodes and temporal dependencies between time slices. In the Emb-GCN layer, node embedding matrix and node parameter learning techniques are employed to extract spatial correlations between traffic nodes at a fine-grained level and learn the specific traffic pattern for each node. Following this, a series of gated recurrent units are stacked as a GRU layer to capture spatial and temporal features from the traffic flow of adjacent nodes in the past few time slices simultaneously. Furthermore, an attention layer is applied in the temporal dimension to extend the receptive field of GRU. The combination of the Emb-GCN, GRU, and the TA layer facilitates the proposed framework exploiting not only the spatial–temporal dependencies but also the degree of interconnectedness between traffic nodes, which benefits the prediction a lot. Experiments on public traffic datasets PEMSD4 and PEMSD8 demonstrate the effectiveness of the proposed method. Compared with state-of-the-art baselines, it achieves 4.62% and 5.78% on PEMS03, 3.08% and 0.37% on PEMSD4, and 5.08% and 0.28% on PEMSD8 superiority on average. Especially for long-term prediction, prediction results for the 60-min interval show the proposed method presents a more notable advantage over compared benchmarks. The implementation on Pytorch is publicly available at https://github.com/csust-sonie/TARGCN.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know