PlumX Metrics
Embed PlumX Metrics

Modeling and analysis of a predator–prey type eco-epidemic system with time delay

Modeling Earth Systems and Environment, ISSN: 2363-6211, Vol: 7, Issue: 3, Page: 1753-1768
2021
  • 11
    Citations
  • 0
    Usage
  • 3
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    11
    • Citation Indexes
      11
  • Captures
    3

Article Description

In this research work, a delay-induced eco-epidemic model using a reconstructed Leslie–Gower-type growth rate is formulated and analyzed. An extended qualitative nature of the solutions of the model system like boundedness, strong uniform persistence, and permanence is examined to secure the longstanding viability of the system. The stability of the system is investigated at different stationary points, and sufficient conditions are obtained for the local as well as global stability. The dynamics of the delay-induced model system, including the Hopf bifurcation phenomenon, is rigorously studied around the coexisting equilibrium using the normal form method and center manifold theorem. Also, the length of the delay to preserve the stability of the coexisting equilibrium is evaluated. It is observed that the effect of infection on the total harvest is negligible, but the effort to harvest can reduce the infection and preserve the system’s stability. The results may help to determine the point of reference for disease persistence and extinction. Based on our analytical results, several numerical simulations are also performed.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know