Optimized Anfis Model with Hybrid Metaheuristic Algorithms for Facial Emotion Recognition
International Journal of Fuzzy Systems, ISSN: 2199-3211, Vol: 25, Issue: 2, Page: 485-496
2023
- 16Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Emotion recognition from facial images is an important and active area of research. Facial features are widely used in computer vision for emotion interpretation, cognitive science, and social interaction. To obtain accurate analysis of facial expressions (happy, angry, sad, surprised, disgusted, fearful, and neutral), a complex method based on human–computer interaction and data is required. It is still difficult to develop an effective and computationally simple mechanism for feature selection and emotion classification. In this paper, an emotion recognition model using adaptive neuro-fuzzy inference system optimized with particle swarm optimization is proposed. The proposed model was compared with many classification algorithms (ANNs, SVMs, and k-Nearest Neighbor (k-NN) and their subcomponents). The confusion matrix was used to evaluate the performance of these classifiers. The proposed model was evaluated using the MUG database. The model achieved a prediction accuracy of 99.6%.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know