Z-cloud Rough Fuzzy-Based PIPRECIA and CoCoSo Integration to Assess Agriculture Decision Support Tools
International Journal of Fuzzy Systems, ISSN: 2199-3211, Vol: 27, Issue: 1, Page: 190-203
2025
- 18Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures18
- Readers18
- 18
Article Description
The livestock sector has exacerbated the problems of ensuring global food safety and greenhouse gas emissions. The rapid increase in livestock production has called to shed light on decision-support tools that develop sustainable production strategies. In this context, this study aims to expand the application of multiple-criteria decision analysis (MCDM) methods to assign weights to criteria and classify decision support tools for livestock with a high degree of certainty. In order to begin serious steps to address the global sustainability problem, this study extended the PIPRECIA method with a high-certainty fuzzy environment called Z-cloud rough numbers (ZCRNs) to record the weight of 19 criteria for decision support tools in livestock farming. An innovative and advanced method called CoCoSo has been utilized to rank decision-support tools for livestock farming. The methodology included two stages. The first phase involved developing the decision matrix. The second phase encompassed developing MCDM methods by clarifying the steps of the PIvot Pairwise RElative Criteria Importance Assessment (PIPRECIA) method for assigning weight to criteria, in addition to highlighting the steps of the CoCoSo method for classifying decision support tools in the livestock industry. The results of the PIPRECIA method extended to the fuzzy environment of ZCRNs confirmed that visualization and herd characteristics received the highest weight compared to the rest of the criteria of decision support tools. The CoCoSo results provided insight into ranking alternatives for livestock decision support tools. AgRECalc has the highest ranking, and FCFC has the lowest ranking. This study conducted an evaluation test to increase the chances of generalizing the results of ranking decision-support tools of the livestock industry.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know