A hybrid econometric–machine learning approach for relative importance analysis: prioritizing food policy
Eurasian Economic Review, ISSN: 2147-429X, Vol: 11, Issue: 3, Page: 549-581
2021
- 7Citations
- 49Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A measure of relative importance of variables is often desired by researchers when the explanatory aspects of econometric methods are of interest. To this end, the author briefly reviews the limitations of conventional econometrics in constructing a reliable measure of variable importance. The author highlights the relative stature of explanatory and predictive analysis in economics and the emergence of fruitful collaborations between econometrics and computer science. Learning lessons from both, the author proposes a hybrid approach based on conventional econometrics and advanced machine learning (ML) algorithms, which are otherwise, used in predictive analytics. The purpose of this article is two-fold: to propose a hybrid approach to assess relative importance and demonstrate its applicability in addressing policy priority issues with an example of food inflation in India, followed by a broader aim to introduce the possibility of conflation of ML and conventional econometrics to an audience of researchers in economics and social sciences, in general.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know