Converting biomass into efficient oxygen reduction reaction catalysts for proton exchange membrane fuel cells
Science China Materials, ISSN: 2199-4501, Vol: 63, Issue: 4, Page: 524-532
2020
- 33Citations
- 33Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
It is urgent to develop low-cost but efficient oxygen reduction reaction (ORR) catalysts for the emerging clean energy devices of fuel cells based on proton exchange membrane. Herein, we report a facile method to covert the biomass of black fungus into an efficient ORR catalyst. The black fungus undergoes hydrothermal and pyrolysis processes to transform into carbon-based materials. The as-obtained BF-N-950 catalyst shows prominent ORR catalytic activities in both acidic and alkaline electrolytes with a half-wave potential reaching 0.77 and 0.91 V, respectively. A membrane electrolyte assembly was fabricated with the as-obtained BF-N-950 as the cathode catalyst which shows a high peak power density of 255 mW cm. The study shows the potential of converting conventional biomass into low-cost ORR catalyst, which is promising for the fuel cell technology.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know