Tunable magnetism in layered CoPS by pressure and carrier doping
Science China Materials, ISSN: 2199-4501, Vol: 64, Issue: 3, Page: 673-682
2021
- 26Citations
- 25Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Despite extensive research on recently discovered layered ferromagnetic (FM) materials, their further development is hampered by the limited number of candidate materials with desired properties. As a much bigger family, layered antiferromagnetic (AFM) materials represent excellent platforms to not only deepen our understanding of fundamental physics but also push forward high-performance spintronics applications. Here, by systematic first-principles calculations, we demonstrate pressure and carrier doping control of magnetic properties in layered AFM CoPS, a representative of transition metal phosphorus trichalcogenides. In particular, pressure can drive isostructural Mott transition, in sharp contrast to other transition metal thiophosphates. Intriguingly, both pressure and carrier doping can realize the long-sought FM half-metallic states with 100% spin polarization percentage, which is good for improving the injection and detection efficiency of spin currents among others. Moreover, the Mott transition is accompanied by instantaneous spin-crossover (SCO) in CoPS, and such cooperative SCO facilitates the implementation of fast-response reversible devices, such as data storage devices, optical displays and sensors. We further provide an in-depth analysis for the mechanisms of FM half-metallicity and SCO. Tunable magnetism in layered AFM materials opens vast opportunities for purposeful device design with various functionalities.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85092700778&origin=inward; http://dx.doi.org/10.1007/s40843-020-1453-0; https://link.springer.com/10.1007/s40843-020-1453-0; https://link.springer.com/content/pdf/10.1007/s40843-020-1453-0.pdf; https://link.springer.com/article/10.1007/s40843-020-1453-0/fulltext.html; https://dx.doi.org/10.1007/s40843-020-1453-0; https://link.springer.com/article/10.1007/s40843-020-1453-0
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know