Methanol-induced luminescence vapochromism based on a Sb-doped organic indium halide hybrid
Science China Materials, ISSN: 2199-4501, Vol: 65, Issue: 7, Page: 1876-1881
2022
- 34Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Ion doping has been demonstrated as a practical approach to achieving highly efficient luminescence in both inorganic phosphors and organic-inorganic hybrids. The as-formed doping species show great potential in optoelectronic applications due to their high photoluminescence quantum yield (PLQY) and excellent stability. Herein, we report highly emissive Sb-doped indium halides (CHN)InCl·HO:Sb (CHN = N,N,N′,N′-tetramethylethane-1,2-diammonium) prepared by solution evaporation methods with an emission that peaked at 565 nm and a PLQY of 74.6%. Photophysical characterizations and density functional theory computational studies verify the broadband emission originating from a self-trapped exciton. Interestingly, a drastic red shift of the emission peak from 565 to 663 nm with yellow luminescence turning to red is observed once the (CHN)InCl·HO:Sb hybrid is exposed to methanol vapor. Moreover, when the methanol-exposed hybrid is put in air, the emission reverts to 565 nm in several minutes. Single-crystal X-ray diffraction studies show a subsequent structure distortion upon the coordination of methanol to the Sb(III) center, which is responsible for the drastic red shift of the emission. Encouragingly, we found that (CHN)InCl·HO:Sb exhibits a specific response to methanol vapor after screening a series of volatile organic compounds with different polarities. Besides, a negligible change of the emission intensity is observed after several cycles of uptaking and releasing methanol. The high fatigue resistance and specific solvent response of the Sb-doped indium halide make it a very promising methanol detector. [Figure not available: see fulltext.].
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know