PlumX Metrics
Embed PlumX Metrics

Molecular Dynamics Simulations of the Collapse of a Cylindrical Pore in the Energetic Material α-RDX

Journal of Dynamic Behavior of Materials, ISSN: 2199-7454, Vol: 1, Issue: 4, Page: 423-438
2015
  • 58
    Citations
  • 0
    Usage
  • 23
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    58
    • Citation Indexes
      58
  • Captures
    23

Article Description

Molecular dynamics simulations were used to study the shock-induced collapse of cylindrical pores in oriented single crystals of the energetic material α-1,3,5-trinitroperhydro-1,3,5-triazine (α-RDX). The shock propagation direction was parallel to the [100] crystal direction and the cylinder axis of the initially 35.0 nm diameter pore was parallel to [010]. Features of the collapse were studied for Rankine–Hugoniot shock pressures P = 9.71, 24.00, and 42.48 GPa. Pore collapse for the weak shock is dominated by visco-plastic deformation in which the pore pinches shut without jet formation and with little penetration of the upstream material into the downstream pore wall. For the strong shock the collapse is hydrodynamic-like and results in the formation of a jet that penetrates significantly into the downstream pore wall. Material flow during collapse was characterized by examining the spread and mixing of sets of initially contiguous molecules and evolution of local velocity fields. Local disorder during collapse was assessed using time autocorrelation functions for molecular rotation. Energy deposition and localization was studied using spatial maps of temperature and pressure calculated as functions of time.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know