Quantitative Insight into the Compressive Strain Rate Sensitivity of Polylactic Acid, Acrylonitrile Butadiene Styrene, Polyamide 12, and Polypropylene in Material Extrusion Additive Manufacturing
Journal of Dynamic Behavior of Materials, ISSN: 2199-7454, Vol: 10, Issue: 3, Page: 251-269
2024
- 3Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Herein, a research and engineering gap, i.e., the quantitative determination of the effects of the compressive loading rate on the engineering response of the most popular polymers in Material Extrusion (MEX) Additive Manufacturing (AM) is successfully filled out. PLA (Polylactic Acid), ABS (Acrylonitrile Butadiene Styrene), PP (Polypropylene), and PA12 (Polyamide 12) raw powders were evaluated and melt-extruded to produce fully documented filaments for 3D printing. Compressive specimens after the ASTM-D695 standard were then fabricated with MEX AM. The compressive tests were carried out in pure quasi-static conditions of the test standard (1.3 mm/min) and in accelerated loading rates of 50, 100, 150, and 200 mm/min respectively per polymer. The experimental and evaluation course proved differences in engineering responses among different polymers, in terms of compressive strength, elasticity modulus, toughness, and strain rate sensitivity index. A common finding was that the increase in the strain rate increased the mechanical response of the polymeric parts. The increase in the compressive strength reached 25% between the lowest and the highest strain rates the parts were tested for most polymers. Remarkable variations of deformation and fracture modes were also observed and documented. The current research yielded results with valuable predictive capacity for modeling and engineering modeling, which hold engineering and industrial merit.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know