Strength and Stiffness Properties of Laboratory-Improved Soft Swedish Clays
International Journal of Geosynthetics and Ground Engineering, ISSN: 2199-9279, Vol: 9, Issue: 1
2023
- 4Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The dry deep mixing method using lime and cement-based binders is widely used in the Nordic countries to improve soft and sensitive clays. Increasing the usage of industrial by-products is needed to reduce climate impact, and this requires thorough knowledge on engineering properties using these binders. A lot of research has been done on this topic; however, tests are often performed on fabricated soils, and there is also a lack of studies on cement kiln dust in organic clays. This paper presents a large database of laboratory-improved soft inorganic and organic natural Swedish clays using quicklime, cement and cement kiln dust. It is shown that many properties and relationships between strength and stiffness, strength development over time and strain to failure are in practice similar for both quicklime and cement kiln dust when combined with cement, but that the strength depends both on the water-binder ratio and soil type. Further, it is shown that cement kiln dust performs well also in organic clay. The data also shows that the Youngs' modulus on average is around 100 times the unconfined compressive strength. For strength development over time, it is seen that the strength increases on average 60% from 7 days of curing to 28 days of curing. The correlations presented herein will serve as a useful guidance in engineering practice.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know