Investigations on Physical, Mechanical and Sliding Wear Assessment of ZA27 -Gr Alloy Composites Using Preference Selection Index Method
International Journal of Metalcasting, ISSN: 2163-3193, Vol: 17, Issue: 4, Page: 2818-2835
2023
- 7Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This present work investigates the physical, mechanical and sliding wear performance of graphite (0–6 wt%)-reinforced ZA-27 alloy composites following ASTM standards. Sliding wear experiments design follows the Taguchi methodology, and the same is adopted for parametric optimization. This follows surface micrograph studies using SEM to understand the associated wear mechanisms responsible for surface damage. Further, the compositions are ranked as per their performance criteria implications using Preference Selection Index (PSI) decision-making technique. It was observed that there are improvements in physical and mechanical properties like void content (2.50–1.33), hardness (107–171 HV), compressive strength (406–496 MPa) flexural strength (300–490 MPa), tensile strength (290–428 MPa) and impact strength (22.76–64 J), as well as sliding wear performance of alloy composites with reinforcement. The AGr-6 alloy composite having 6 wt% graphite particulates were observed to optimize the overall physical, mechanical, and sliding wear performance. The analysis of performance data using the PSI decision-making tool reveals AGr -6 >AGr -4 > AGr -2 > AGr -0 order of material composition that optimizes the required performance. As both decisions are attuned, decision-making tools like PSI could be used in such material selection problems.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know