Study of Thermo-Viscoelastic Interactions in Microplates Resting on an Elastic Foundation and Subjected to External Loads Using DPL Thermoelastic Model
Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, ISSN: 2364-1835
2024
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
This work specifically examines the modeling of the transient thermodynamic reaction of a Kirchhoff–Love thermoelastic thin circular plate that is simply supported and set on an elastic base of Winkler type. The plate experiences a time-varying external load. The Kelvin-Voigt model is employed to simulate the viscoelastic behavior of the plate in this investigation. The modified dual-phase-lag (DPL) thermoelasticity model is used to represent the intricate thermoelastic properties of the plate accurately. The DPL thermoelastic model includes the effects of restricted thermomechanical diffusion, which considers the connection between thermal and mechanical events in the plate. This model offers a more extensive depiction of the plate's reaction, considering both temperature and mechanical factors. Analytical solutions for the studied variables, such as deflection, temperature, displacement, bending moment, and thermal stress, were extracted using the Laplace transform. The viscoelastic coefficient, Winkler base, and the angular frequency of the distributed load greatly affect how circular plate structures behave, as shown by numerical examples and insightful discussions. Finally, to verify the validity of the results and the proposed model, they were compared with previously published studies and their corresponding thermoelastic models.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know