Temporal network compression via network hashing
Applied Network Science, ISSN: 2364-8228, Vol: 9, Issue: 1
2024
- 6Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures6
- Readers6
- Mentions1
- News Mentions1
- News1
Most Recent News
Reports from University of Lyon Describe Recent Advances in Applied Network Science (Temporal network compression via network hashing)
2024 FEB 06 (NewsRx) -- By a News Reporter-Staff News Editor at Network Daily News -- Investigators discuss new findings in applied network science. According
Article Description
Pairwise temporal interactions between entities can be represented as temporal networks, which code the propagation of processes such as epidemic spreading or information cascades, evolving on top of them. The largest outcome of these processes is directly linked to the structure of the underlying network. Indeed, a node of a network at a given time cannot affect more nodes in the future than it can reach via time-respecting paths. This set of nodes reachable from a source defines an out-component, which identification is costly. In this paper, we propose an efficient matrix algorithm to tackle this issue and show that it outperforms other state-of-the-art methods. Secondly, we propose a hashing framework to coarsen large temporal networks into smaller proxies on which out-components are more easily estimated, and then recombined to obtain the initial components. Our graph hashing solution has implications in privacy respecting representation of temporal networks.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know