Survey of imitation learning for robotic manipulation
International Journal of Intelligent Robotics and Applications, ISSN: 2366-598X, Vol: 3, Issue: 4, Page: 362-369
2019
- 116Citations
- 135Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
With the development of robotics, the application of robots has gradually evolved from industrial scenes to more intelligent service scenarios. For multitasking operations of robots in complex and uncertain environments, the traditional manual coding method is not only cumbersome but also unable to adapt to sudden changes in the environment. Imitation learning that avoids learning skills from scratch by using the expert demonstration has become the most effective way for robotic manipulation. The paper is intended to provide the survey of imitation learning of robotic manipulation and explore the future research trend. The review of the art of imitation learning for robotic manipulation involves three aspects that are demonstration, representation and learning algorithms. Towards the end of the paper, we highlight areas of future research potential.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know