FPGA-based position reconstruction method for neutron beam flux spatial distribution measurement in BNCT
Nuclear Science and Techniques, ISSN: 2210-3147, Vol: 35, Issue: 3
2024
- 1Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
Article Description
A new measurement method for the spatial distribution of neutron beam flux in boron neutron capture therapy (BNCT) is being developed based on the two-dimensional Micromegas detector. To address the issue of long processing times in traditional offline position reconstruction methods, this paper proposes a field programmable gate array based online position reconstruction method utilizing the micro-time projection chamber principle. This method encapsulates key technical aspects: a self-adaptive serial link technique built upon the dynamical adjustment of the delay chain length, fast sorting, a coordinate-matching technique based on the mapping between signal timestamps and random access memory (RAM) addresses, and a precise start point-merging technique utilizing a circular combined RAM. The performance test of the self-adaptive serial link shows that the bit error rate of the link is better than 10 at a confidence level of 99%, ensuring reliable data transmission. The experiment utilizing the readout electronics and Micromegas detector shows a spatial resolution of approximately 1.4 mm, surpassing the current method’s resolution level of 5 mm. The beam experiment confirms that the readout electronics system can obtain the flux spatial distribution of neutron beams online, thus validating the feasibility of the position reconstruction method. The online position reconstruction method avoids traditional methods, such as bubble sorting and traversal searching, simplifies the design of the logic firmware, and reduces the time complexity from O(n) to O(n). This study contributes to the advancement in measuring neutron beam flux for BNCT.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85192082688&origin=inward; http://dx.doi.org/10.1007/s41365-024-01417-1; https://link.springer.com/10.1007/s41365-024-01417-1; http://sciencechina.cn/gw.jsp?action=cited_outline.jsp&type=1&id=7727751&internal_id=7727751&from=elsevier; https://dx.doi.org/10.1007/s41365-024-01417-1; https://link.springer.com/article/10.1007/s41365-024-01417-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know