Mesoporous SiO Sphere-Based Electrochemical Impedance Immunosensor for Ultrasensitive Detection of Bovine Interferon-γ
Journal of Analysis and Testing, ISSN: 2509-4696, Vol: 7, Issue: 3, Page: 295-303
2023
- 20Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Interferon-γ is a kind of protein with a wide range of biological activities, which can regulate the immune function of the body, and can be used as an important marker to detect and treat bovine tuberculosis diseases. Here, a picogram-level bovine interferon-γ (BoIFN-γ) electrochemical impedance immunosensor was constructed for the first time using mesoporous silica nanospheres (MSNs) to immobilize specific monoclonal BoIFN-γ antibodies. The MSNs and BoIFN-γ immunosensors were characterized using scanning electron microscopy, transmission electron microscope, nitrogen adsorption experiment, X-ray photoelectron spectra, and contact angle measurements. MSNs possess a substantial specific surface area and significant hydrophilicity, and can immobilize many antibody molecules, thereby improving detection sensitivity. The immunosensor has a linear detection range from 0.001 to 10.0 ng/mL with an exceptionally low detection limit of 0.62 pg/mL. Compared to the traditional BoIFN-γ analysis method, BoIFN-γ immunosensor presents superiorities in sensitivity, wide linear range as well as short processing time. More importantly, the BoIFN-γ sensor exhibits high selectivity, reliable repeatability as well as stability, providing a promising application prospect for the early diagnosis of Mycobacterium bovis infection.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know