Unveiling social network clans: improving genealogical clan classification with SVM neural classifiers and enhanced kernels
International Journal of Information Technology (Singapore), ISSN: 2511-2112, Vol: 17, Issue: 1, Page: 513-528
2025
- 1Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study, we developed a variant of the support vector machine (SVM) neural classifier and utilized it to categorize clans in a genealogical dataset. For each of the five kernels, all four variants, twin SVM (TSVM), proximal SVM (PSVM), twin proximal SVM (TPSVM), and multi-class SVM (MCSVM) classifier are simulated and tested. The analysis of variance - radial basis function (ANOVA RBF) kernel outperformed all other SVM variants, in terms of classification accuracy with the lowest error value. Additionally, it is found that for the considered dataset, TPSVM neural classifier with ANOVA RBF Kernel generated 98.91% classification accuracy, and the TPSVM classifier has achieved the minimized mean square error (MSE) value of 0.00015. The Twin Proximal SVM classifier has produced enhanced classification accuracy with better precision and F1-score in comparison to all other developed and simulated SVM classifier models.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know