Relation between the divergent section’s angle and two-phase heat in the condensation flow of wet steam in a supersonic nozzle
Multiscale and Multidisciplinary Modeling, Experiments and Design, ISSN: 2520-8179, Vol: 7, Issue: 2, Page: 777-785
2024
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Latent heat release by homogeneous condensation in the supersonic flow of the wet steam extremely affects the flow dynamics and causes condensation shock. Condensation is an irreversible process and leads to wetness losses. Investigating the factors affecting the condensation is of great importance. In the present study, the impact of the angle of the divergent section of the nozzle is studied on the static pressure distribution, temperature, Mach number, nucleation phenomenon, liquid mass fraction, and two-phase heat. The following angles are considered for the divergent section of the nozzle: 1.8°, 1°, 3°, 6°, 9°, and 12°. The wet steam flow is simulated in a 2D supersonic nozzle. Based on the results, as the angle increases, the nozzle’s pressure and temperature decrease and the Mach number increases. The nucleation rate and liquid mass fraction increase. The heat of the two-phase, which indicates the latent heat released due to a phase change, increases. By increasing the angle from 1.83° to 12°, the two-phase latent heat and the liquid mass fraction increase 171% and 166%, respectively. The present study pinpoints the importance of the nozzle’s divergent section’s angle in the condensation phenomenon.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know