Effect of elevated temperatures on properties of sustainable concrete composites incorporating waste metalized plastic fibres
SN Applied Sciences, ISSN: 2523-3971, Vol: 1, Issue: 11
2019
- 11Citations
- 37Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The utilisation of industrial waste in the production of sustainable construction materials has attracted much attention recently due to the saving of vital places for landfills, low-cost of waste materials and also an improvement in the concrete properties. Exposing concrete structures to elevated temperatures causes progressive failure of the macro- and micro-structures of cement paste and, therefore, severe deterioration and damages in the load-bearing capacity. This study explored the effect of waste metalized plastic (WMP) fibres and palm oil fuel ash (POFA) on the performance of concrete exposed to high temperatures of 200, 400, 600 and 800 °C. Four concrete mixes comprising 0 and 0.5% WMP fibres, and 0 and 20% POFA content were cast. Properties studied include mass loss, compressive strength, and ultrasonic pulse velocity. The results showed that the adding of WMP fibre to the concrete mixes significantly improves the concrete performance at elevated temperatures with the lower rate of strength loss along with eliminating the explosive spalling behaviour as compared to those of plain concrete mixes. Furthermore, in comparing the results of compressive strength losses at a high temperature of 800 °C, strength losses were lower for specimens containing 0.5% WMP fibres than those of plain specimens. Moreover, green concrete decreases waste materials, the diminution of harmful impacts on the environment, and leads to sustainable and green cement and concrete industries.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85090258180&origin=inward; http://dx.doi.org/10.1007/s42452-019-1587-9; http://link.springer.com/10.1007/s42452-019-1587-9; http://link.springer.com/content/pdf/10.1007/s42452-019-1587-9.pdf; http://link.springer.com/article/10.1007/s42452-019-1587-9/fulltext.html; https://dx.doi.org/10.1007/s42452-019-1587-9; https://link.springer.com/article/10.1007/s42452-019-1587-9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know