Identification and characterization of hydrothermally altered minerals using surface and space-based reflectance spectroscopy, in parts of south-eastern Rajasthan, India
SN Applied Sciences, ISSN: 2523-3971, Vol: 2, Issue: 4
2020
- 5Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Imaging spectroscopy has evolved as one of the most significant advancements due to contiguous spectral coverage and higher spectral resolution which enable mineral identification and mineral exploration. Many phyllosilicate and carbonate minerals show specific spectral absorption feature in the wavelength range of visible-to-near-infra-red region of electromagnetic spectrum. These spectral features enable delineation of different mineral assemblages which in turn help in mineral prospecting using hyperspectral imaging spectra. The present study is focussed on evaluation and application of EO-1 Hyperion (hyperspectral) data as an Earth Observation tool for mineral detection and mapping in parts of Udaipur district in south-eastern Rajasthan. Hyperion reflectance imagery of this area was analysed using spectral angle mapper after pre-processing, atmospheric correction and geometric correction. Five endmembers, viz. dolomite, montmorillonite, chlorite, phlogopite and serpentine, were derived from both atmospherically corrected image and from rock samples in the laboratory using ASD field spectroradiometer covering spectral range of 0.4–2.5 µm. The reflectance spectra of endmembers derived from satellite image were initially compared with USGS mineral spectral library, and then after comparing with laboratory-based spectra with respect to absorption features, target minerals were identified which shows more than 70% match with the USGS and laboratory spectra. These minerals were also cross-checked with the reported litho-sequence of the area. Minerals derived from laboratory and image spectra are indicative of hydrothermally altered outer thermal aureole which is also corroborated by litho-structural association of the area.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85100700571&origin=inward; http://dx.doi.org/10.1007/s42452-020-2225-2; http://link.springer.com/10.1007/s42452-020-2225-2; http://link.springer.com/content/pdf/10.1007/s42452-020-2225-2.pdf; http://link.springer.com/article/10.1007/s42452-020-2225-2/fulltext.html; https://dx.doi.org/10.1007/s42452-020-2225-2; https://link.springer.com/article/10.1007/s42452-020-2225-2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know