Deep learning for intelligent traffic sensing and prediction: recent advances and future challenges
CCF Transactions on Pervasive Computing and Interaction, ISSN: 2524-5228, Vol: 2, Issue: 4, Page: 240-260
2020
- 37Citations
- 98Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
With the emerging concepts of smart cities and intelligent transportation systems, accurate traffic sensing and prediction have become critically important to support urban management and traffic control. In recent years, the rapid uptake of the Internet of Vehicles and the rising pervasiveness of mobile services have produced unprecedented amounts of data to serve traffic sensing and prediction applications. However, it is significantly challenging to fulfill the computation demands by the big traffic data with ever-increasing complexity and diversity. Deep learning, with its powerful capabilities in representation learning and multi-level abstractions, has recently become the most effective approach in many intelligent sensing systems. In this paper, we present an up-to-date literature review on the most advanced research works in deep learning for intelligent traffic sensing and prediction.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know