PlumX Metrics
Embed PlumX Metrics

Use of the McHargian LUSA in agricultural research and decision-making in the age of non-stationarity and big earth observation data

Socio-Ecological Practice Research, ISSN: 2524-5287, Vol: 1, Issue: 3-4, Page: 297-324
2019
  • 2
    Citations
  • 0
    Usage
  • 16
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    2
    • Citation Indexes
      2
  • Captures
    16

Review Description

In the past 50 years, there have been two major changes that are of methodological and consequential importance to the McHargian land-use suitability analysis (LUSA): increasing evidence of non-stationarity of global and regional ecological conditions and increasing availability of high-resolution spatial–temporal earth observation data. For 50 years, the McHargian LUSA has been an important analysis tool for designers and planners for both regional conservation planning and development. McHarg’s LUSA is a decision support tool that reduces the dimensions of spatial–temporal data. This makes the technique relevant beyond decision support to spatial identification and prediction of areas of socio-ecological opportunity, risk, and priority. In this article, I use a set of recent studies relating to agricultural LUSA to reveal relationships between the traditional McHargian LUSA and related spatial–temporal research methods that are adapting to more data and non-stationary ecological conditions. Using a classification based on descriptive, predictive, and prescriptive research activities, I organize these related methods and illustrate how linkages between research activities can be used to assimilate more kinds of spatial “big data,” address non-stationarity in socio-ecological systems, and suggest ways to enhance decision-making and collaboration between planners and other sciences.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know