Experimental and numerical investigation of different geometrical parameters in a centrifugal blood pump
Research on Biomedical Engineering, ISSN: 2446-4740, Vol: 38, Issue: 2, Page: 423-437
2022
- 12Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Purpose: Due to the importance of public health and economics, cardiovascular disease has become one of the most important debates and challenges for scientists. However, few studies have been done to address this challenge. The main objective of this document is to provide an optimal model to improve the performance of the left ventricular assist device and reduce costs. In this way, in the present study, the experimental and numerical procedures were developed to analyze the effects of the geometrical features and operational parameters on the performance of a centrifugal blood pump (CBP). Methods: In order to achieve this aim, first, experimental tests were carried out to study the influence of the working fluid temperature and the rotational speed on the CBP. Subsequently, the performance of the CBP was assessed using computational fluid dynamics (CFD), and comparison was made against the experimental data. In addition, the influence of mounting an inducer on the overall performance of CBP was also investigated. Results: Good agreement between the CFD and the data was obtained. The CFD results showed that increasing the fluid temperature and rotational speed leads to an increase in the hydraulic efficiency, pressure difference, and power. In addition, the reduction of the pressure difference and hydraulic efficiency with increasing the surface roughness was observed. While mounting an inducer on the pump did not significantly impact its overall performance, the highest value of the wall shear stress dropped moderately on the impeller and, therefore, unveiled the possibility of improving the performance of such designs.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know