The Beneficial Effects of Aluminum on the Plant Growth in Camellia japonica
Journal of Soil Science and Plant Nutrition, ISSN: 0718-9516, Vol: 20, Issue: 4, Page: 1799-1809
2020
- 19Citations
- 21Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The aim of this research was to investigate the effect of aluminum (Al) on the plant growth, nutrient uptake, and Al accumulation in Camellia japonica. A hydroponic experiment was performed in a completely randomized design with four concentration of Al (0, 0.5, 1, and 2 mM). After growing 8 weeks in the hydroponic nutrient solution, the fine roots and mature leaves of plants were sampled to analyze the biomass, photosynthetic parameters, nutrients uptake, and Al accumulation. The 0.5, 1, and 2 mM Al supplement presented an increase of 71, 118, and 42% on the root biomass, respectively, comparing to the control. The Al-induced growth stimulation in 0.5 and 1 mM Al treatment of Camellia japonica was associated with increased levels of chlorophyll a and b, promotion of net photosynthesis rate, raised contents of soluble sugar and total soluble protein, and decreased levels of malondialdehyde (MDA) and free proline in both leaves and fine roots. The concentrations of nitrogen (N), phosphorus (P), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in fine roots of 1 mM Al-treated plants were significantly higher than those in the control plants, whereas the levels of calcium (Ca) and magnesium (Mg) were much lower. The mean Al levels in the 1 mM Al-treated plants were 1587, 7189, and 11,192 mg kg (dry mass, DW) for the 1st/2nd, 3rd/4th mature leaves, and fine roots, respectively. This study indicated that 0.5 and 1 mM Al were beneficial to the growth of Camellia japonica. This Al-induced growth enhancement was presumably associated with the increased uptake of nutrient elements. This study also confirmed Camellia japonica as an Al-accumulator.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85084157882&origin=inward; http://dx.doi.org/10.1007/s42729-020-00251-9; https://link.springer.com/10.1007/s42729-020-00251-9; https://link.springer.com/content/pdf/10.1007/s42729-020-00251-9.pdf; https://link.springer.com/article/10.1007/s42729-020-00251-9/fulltext.html; https://dx.doi.org/10.1007/s42729-020-00251-9; https://link.springer.com/article/10.1007/s42729-020-00251-9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know