Exogenous Application of Selenium Nanoparticles (Se-NPs) to Mitigate Salt Stress in Soybean-Evaluation of Physiological, Molecular and Biochemical Processes
Journal of Soil Science and Plant Nutrition, ISSN: 0718-9516, Vol: 24, Issue: 4, Page: 6798-6813
2024
- 4Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
- Mentions1
- News Mentions1
- News1
Most Recent News
Study Results from National Research Centre Provide New Insights into Nanoparticles [Exogenous Application of Selenium Nanoparticles (Se-nps) To Mitigate Salt Stress In Soybean-evaluation of Physiological, Molecular and Biochemical Processes]
2024 OCT 11 (NewsRx) -- By a News Reporter-Staff News Editor at Food Daily News -- Data detailed on Nanotechnology - Nanoparticles have been presented.
Article Description
Salt stress is identified as a significant abiotic stress that hampers agricultural sustainability globally. The study was carried out to investigate the potential mitigating effects of selenium nanoparticles (Se-NPs) on salt stress in soybean. Two weeks old grown soybean seedlings were subjected to salt stress conditions (4000 mg L of sea salts). The plants were foliar sprayed with Se-NPs at concentrations of 0.0, 0.5, 1.0 and 1.5 mg L twice. The first application was applied at four weeks from sowing and the second application was added after two weeks from the first application. Compared to control, Se-NPs application mitigates the negative effect of salinity on plant growth to a variable extent. This improvement may be attributed to several factors such as increased the concentrations of photosynthetic pigments, total soluble sugars and total protein. In addition, Se-NPs alleviated the adversely effect of oxidative stress by increasing the antioxidant activities and potassium contents without markedly increase in the sodium content of the soybean leaf tissues. Also, Se-NPs enhanced the biosynthesis of secondary metabolites such as total phenolic content under salinity. Moreover, Se-NPs spray significantly reinforced the development of conducting secondary tissues in the leaves and roots of the treated plants. GmHKT1 gene transcription was markedly up-regulated in salinized soybean and foliar sprayed with Se-NPs as a molecular strategy to cope with the salinity. Based on the obtained results, among the different doses of Se-NPs, soybean plants sprayed with 1.0 mg L Se-NPs showed better salt tolerance. The foliar spray of Se-NPs may be considered as a promising approach to enhance salt tolerance in soybean plants, which could have significant implications for improving agricultural sustainability in salt-affected regions.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know