Reduced sulfur compounds and carboxylic acid groups in dissolved PFRs of iron-biochar enhance Cr(VI) reduction in anaerobic conditions
Biochar, ISSN: 2524-7867, Vol: 6, Issue: 1
2024
- 4Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In addition to the adsorption and immobilization capacities of iron-modified biochars, these materials produce persistent free radicals (PFRs) that can carry out metal [i.e., Cr(VI)] redox transformations, but the primary forms and active species of PFRs involved are not well understood. Here, we investigated the key species of PFRs of α-FeO-modified biochar (MBC) and their influence on Cr(VI) reduction under anaerobic conditions simulating paddy soil environments. MBC produced bulk phenoxyl PFRs that promoted Cr(VI) reduction due to the catalytic effect of the transition metal Fe. In addition, MBC was more efficient in reducing Cr(VI) under anaerobic conditions than under aerobic conditions due to the more active and accessible dissolved PFRs present in the dissolved organic matter (DOM). The electron transfer capacity of DOM was demonstrated by excitation-emission matrix (EEM) spectrophotometry combined with parallel factor analysis, which showed that the protein-like and humic-like components of DOM were involved in Cr(VI) reduction. Furthermore, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) analysis indicated that reduced-S compounds (O/S < 4) and carboxylic acid (–COO) groups in the unsaturated aliphatic and lignin-like compounds are potentially the main active species accelerating Cr(VI) reduction under anaerobic conditions. Our results provide new insights into the role of dissolved PFRs from iron-modified biochar in promoting Cr(VI) reduction under anaerobic conditions such as flooded soils. Graphical Abstract: (Figure presented.)
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know