Preparation and effect evaluation of rigid polyurethane flame retardant modified by graphene
Carbon Letters, ISSN: 2233-4998, Vol: 33, Issue: 7, Page: 2267-2275
2023
- 13Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study, we investigate the impact of Isophorone diisocyanate functionalized graphene oxide (IPDI-GO) on the flame retardancy of rigid polyurethane foam (RPUF). IPDI-GO was synthesized and introduced into the RPUF matrix. The flame retardancy of RPUF was significantly enhanced by the incorporation of IPDI-GO, as evidenced by a reduction in peak heat release rate (PHRR) by 25% and total smoke production (TSP) by 15% in comparison to pure RPUF when IPDI-GO was incorporated at 3 wt%. Scanning electron microscopy (SEM) revealed that IPDI-GO contributed to the formation of a compact, continuous char layer on the RPUF surface. This study underscores the potential of IPDI-GO as a promising flame retardant additive for RPUF.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know