An Integrated Algorithm for Short Term Charging Load Prediction of Electric Vehicles Based on a More Complete Feature Set
Journal of Electrical Engineering and Technology, ISSN: 2093-7423, Vol: 20, Issue: 1, Page: 47-59
2025
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
The large-scale development of electric vehicles has made accurate short-term charging load prediction increasingly important for ensuring the safe operation of the power grid. To address issues of poor generalization ability and overfitting in single models, this paper proposes an integrated stacking prediction algorithm that combines three models: category boost (CatBoost), light gradient boosting machine (LGBM), and ridge regression (RR), using a stacking integration framework. The Cat–LGBM–RR model uses an internal stacking mechanism, where the RR model calculates the final prediction results after the CatBoost and LGBM models generate the necessary metadata. The effectiveness of the proposed model is demonstrated using load data from a new energy charging pile organization in a province of China. This paper’s contributions include: (1) proposing a stacking integration-based prediction algorithm; (2) providing a more thorough feature construction approach; (3) comparing and verifying the performance using enterprise real data sets and a variety of reference models. Numerical examples show that the mape of the Cat–LGBM–RR model was 4.52%. Compared with other models, it has precision advantage.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know