Numerical Approach for Solving Two-Dimensional Time-Fractional Fisher Equation via HABC-N Method
Communications on Applied Mathematics and Computation, ISSN: 2661-8893, Vol: 7, Issue: 1, Page: 315-346
2025
- 1Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
For the two-dimensional time-fractional Fisher equation (2D-TFFE), a hybrid alternating band Crank-Nicolson (HABC-N) method based on the parallel finite difference technique is proposed. The explicit difference method, implicit difference method, and C-N difference method are used simultaneously with the alternating band technique to create the HABC-N method. The existence of the solution and unconditional stability for the HABC-N method, as well as its uniqueness, are demonstrated by theoretical study. The HABC-N method’s convergence order is Oτ2-α+h12+h22. The theoretical study is bolstered by numerical experiments, which establish that the 2D-TFFE can be solved using the HABC-N method.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know