Overexpression of TaWRKY46 enhances drought tolerance in transgenic wheat
Cereal Research Communications, ISSN: 0133-3720, Vol: 50, Issue: 4, Page: 679-688
2022
- 4Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Drought stress is a severe environmental factor that greatly restricts plant distribution and crop production. Transgenic breeding offers new opportunities for developing drought-resistant varieties. The WRKY transcription factors have been reported to be involved in various plant physiological and biochemical processes. In this study, we report the impact of TaWRKY46 on abiotic tolerance in wheat (Triticum aestivum L.). The transcription levels of the TaWRKY46 gene were differentially regulated by diverse abiotic stresses and hormone treatments, including PEG-induced stress (20% polyethylene glycol 6000), cold (4 °C), salt (100 mM NaCl), abscisic acid (100 μM ABA) and hydrogen peroxide (10 mM HO). The TaWRKY46-GFP fusion protein was localized to the nucleus of wheat protoplast. The N-terminal of TaWRKY46 showed transcriptional activation activity. Overexpression of TaWRKY46 in wheat resulted in enhanced drought stress tolerance. TaWRKY46-overexpressing plants exhibited increase survival rate, soluble sugar, proline and superoxide dismutase (SOD), as well as higher activities of catalase (CAT) and peroxidase (POD), but lower contents of malondialdehyde (MDA) and HO content. Taken together, our results indicate that TaWRKY46 functions as a positive factor under drought stress by regulating the osmotic balance and ROS scavenging.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know