A Fully Automated Methodology for the Selection and Extraction of Energy-Relevant Features for the Energy Consumption of Battery Electric Vehicles
SN Computer Science, ISSN: 2661-8907, Vol: 3, Issue: 5
2022
- 4Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Compared to traditional vehicles, battery electric vehicles (BEVs) have a limited driving range. Therefore, accurately estimating the range of BEVs is an important requirement to eliminate range anxiety, which describes the driver’s fear of getting stranded. However, range estimators used in currently available BEVs are not accurate enough. To overcome this problem, more precise energy estimation techniques have been investigated. Modeling the energy consumption of BEVs is essential to obtaining an accurate estimation. For accurately estimating the energy consumption, many non-deterministic influencing factors such as weather and traffic conditions, driving style, and the travel route need to be considered. Thus, reducing the possible feature space to improve estimation is necessary. In consequence, we propose a fully automatic methodology to select and extract a subset of energy-relevant features. Utilizing existing real-world data to investigate all types of influencing factors. Taking into account different segmentation methods, data scalers, feature selection, and extraction techniques, our methodology uses the full range of combinations to identify the combination that yields the best subset of features.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know