Machine Learning-Based Fingerprinting Positioning in Massive MIMO Networks: Analysis on the Impact of Small Training Sample Size to the Positioning Performance
SN Computer Science, ISSN: 2661-8907, Vol: 4, Issue: 3
2023
- 2Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
It is well known that the bigger the training dataset, the higher the performance of deep learning algorithms. But gathering/collecting huge real measured CSI samples to be used as fingerprints to deep learning-based positioning models is a very challenging task both in terms of time and resources. Training deep learning models using very big training dataset is also very costly because it requires access to very powerful computing devices which are very expensive and thus not affordable to everyone. This might be one of many reasons that could hinder research and development of powerful deep learning algorithms to solve different societal problems. This necessitates the need to engage more in research to build high-performing deep learning models capable of giving out satisfactory performance using limited computing resources and small training dataset sizes. In this paper, we analyzed the impact of small training sample size to the positioning performance of CSI-based deep learning fingerprinting positioning models. Results show that with better design of deep learning models, it is possible to achieve high positioning performance using relatively small training sample sizes.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know