Hybrid Heuristic for Solving the Euclidean Travelling Salesman Problem
SN Computer Science, ISSN: 2661-8907, Vol: 5, Issue: 8
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study introduces a hybrid methodology that integrates the ant colony optimization (ACO) with genetic algorithm (GA) techniques. ACO is employed first to create an initial population and to derive a sub-optimal solution for the TSP using a newly designed inver-over (IO) operator. The Proposed IO operator is utilized to improve the solution derived from the ACO. This refined solution is then employed in the GA, where a genetic operator is applied alongside other randomly selected members from the initial population during the second phase. GA is used with the proposed crossover operator and the 2-opt heuristic in this phase to achieve optimal solution refinement towards a global optimum. Our evaluation of the algorithm’s efficacy uses benchmark datasets from TSPLIB. The proposed approach gives superior solution quality, both the average and the best solution metrics, demonstrating enhanced performance with a lower percentage of best error and percentage of average error. Experimental results indicate that the hybrid approach outperforms the efficiency of other state-of-the-art techniques.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know