Temporal-Like Bivariate Fay-Herriot Model: Leveraging Past Responses and Advanced Preprocessing for Enhanced Small Area Estimation of Growing Stock Volume
Operations Research Forum, ISSN: 2662-2556, Vol: 5, Issue: 1
2024
- 3Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Forest inventories are crucial for effective ecosystem management but often lack precision for smaller geographical units due to limited sample sizes. This study introduces an enhanced temporal-like bivariate Fay-Herriot model, improving upon its univariate counterpart. The model incorporates field data and auxiliary data, including canopy height metrics from WorldView stereo-imagery and past census data, sourced from the University Forest of Pertouli in Central Greece. The model aims to estimate the growing stock volume for 2008 and 2018, focusing on enhancing the precision of the 2018 estimates. The 2008 dependent variable is used as auxiliary information by the model for more reliable 2018 small area estimates. A novel preprocessing pipeline is also introduced, which includes outlier identification, cluster analysis, and variance smoothing. Compared to direct estimates and the standard univariate Fay-Herriot model, our bivariate approach shows a percentage variance reduction of 96.58% and 13.52%, respectively. The methodology not only offers more reliable estimates with reduced variance and bias but also contributes to more accurate decision-making for sustainable forest management.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know