Organic matter addition promotes Cd immobilization in alkaline paddy soils
Carbon Research, ISSN: 2731-6696, Vol: 2, Issue: 1
2023
- 5Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Straw incorporation into the soil is a common agricultural practice, but its effect on soil cadmium (Cd) mobility is not well understood. We added 0–20 g kg organic matters (OMs) with different C/N ratios to three spiked alkaline paddy soils that contained a realistically low concentration of total Cd (0.94 mg kg), and then investigated soil Cd solubility in alternate watering conditions. As current physical and chemical methods have difficulties in accurately determining the distribution and speciation of Cd in soil at a low concentration, we measured multiple soil properties to identify key factors regulating dissolved Cd concentration. For all three soils, pH and dissolved Cd concentration both decreased after flooding and increased after subsequent drying. OM addition significantly reduced soil Cd solubility at both flooding and drying stages. Random forest and linear regressions further confirmed that soil total organic carbon, rather than pH, dissolved organic carbon, or total inorganic carbon as previously suggested, was the primary predictor of Cd solubility. OMs with different C/N ratios had similar effects on soil Cd solubility, whereas the effect of OM addition rate depended on soil type. The results demonstrated the potential of straw incorporation for the remediation of Cd-contaminated alkaline paddy soils, through mechanisms that differ from those reported for acid soils. Graphical Abstract: [Figure not available: see fulltext.]
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know