Enzymic hydration of benzene oxide: Assay and properties
Archives of Biochemistry and Biophysics, ISSN: 0003-9861, Vol: 199, Issue: 2, Page: 538-544
1980
- 12Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A radiometric assay for epoxide hydratase using [ 14 C]benzene oxide as substrate has been developed. The reaction product trans -1,2-[ 14 C]dihydroxy-1,2-dihydrobenzene (benzene dihydrodiol) was separated from the other components by simple extraction of the unreacted substrate and phenol (a rearrangement product) into a mixture of light petroleum and diethyl ether followed by extraction of the benzene dihydrodiol into ethyl acetate. The product was then estimated by scintillation counting. Using this assay the enzymic hydration of benzene oxide and the possible existence of a microsomal epoxide hydratase with a greater specificity toward benzene oxide were reinvestigated. The sequence of activities of microsomes from various organs was liver > kidney > lung > skin, the pH optimum of enzymic benzene oxide hydration was about pH 9.0, which is similar to that of styrene oxide hydration and both activities were equally stable when liver microsomal fractions were stored. The effect of low molecular weight inhibitors upon the hydration of styrene and benzene oxide by liver microsomes was similar in some cases and dissimilar in others. However, all the dissimilarities could be explained without recourse to the hypothesis of the existence of a separate benzene oxide hydratase. During enzyme purification studies the activity toward benzene oxide was inhibited by the detergent used (cutscum) but was recovered when the detergent was removed. Solubilization without significant loss of activity was successful using sodium cholate. This allowed immunoprecipitation studies, which were performed using monospecific antiserum raised against homogeneous epoxide hydratase. The dose-response curves of the extent of precipitation of activity with increasing amounts of added antiserum were indistinguishable for benzene oxide and styrene oxide as substrate. At high antiserum concentrations precipitation was complete with both substrates. The findings, taken together, indicate the presence in rat liver microsomes of a single epoxide hydratase catalyzing the hydration of both styrene and benzene oxide or the presence of enzymes so closely related that these cannot be distinguished by any of the criteria tested.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/0003986180903112; http://dx.doi.org/10.1016/0003-9861(80)90311-2; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0018977536&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/7362242; https://linkinghub.elsevier.com/retrieve/pii/0003986180903112; http://dx.doi.org/10.1016/0003-9861%2880%2990311-2; https://dx.doi.org/10.1016/0003-9861%2880%2990311-2
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know